

D21x 快速入门

Version 2.3

修订日期: 2025-04-09

版权声明

本文档是匠芯创科技("ArtInChip")的原创作品,匠芯创科技拥有该文档的全部版权。全部或部分复制必须获得匠芯创科技的书面批准,并向版权所有人明确确认。凡侵犯本公司版权等知识产权的,本公司将保留依法追究其法律责任的权利。

在法律允许的范围内,在此声明:使用前请仔细阅读合同条款和条件以及相关说明,并严格遵守本文档中的说明。匠芯 创科技不对不当行为的后果(包括但不限于电压过高、超频或温度过高)承担任何责任。

匠芯创科技提供的信息仅作为参考或典型应用,本文档中的所有声明、信息和建议不构成任何明示或暗示的担保。匠芯 创科技保留随时更改电路设计和/或规格的权利,恕不另行通知。

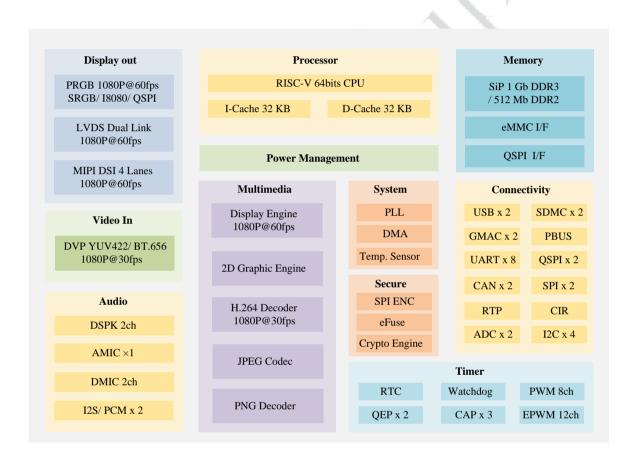
客户应全权负责获得实施解决方案/产品可能需要的第三方许可,匠芯创科技不承担任何与第三方许可相关的许可费或特许权使用费。对于任何要求的第三方许可证所涵盖的事项,匠芯创科技不承担任何保证、赔偿或其它义务。

凡以任何方式直接或间接使用本文档资料者,视为自愿接受本文档声明的约束。

修订记录

下表记录了 2025-01-09 至今的所有修订记录:

表 0-1 修订记录


版本	章节	修订说明
V2.3	开发板	新增开发板格式调整。
	编译 SDK	删除 Eclipse 和 VMWare 等不适用的内容,并新增的编译方法。
V2.2	-	优化了内容和格式。
V2.1	下载代码仓库	更新了 Gitee 代码库下载链接及相关描述。
	文档资源	
V2.0	-	优化了内容和格式,并调整了章节顺序。

内容

版权声明	ii
修订记录	iii
1. SoC	5
1.1. 处理器	5
1.2. 安全	6
1.3. 启动	7
1.4. 时钟	8
1.5. 电源	
1.6. 存储	9
1.7. 多媒体	10
1.8. 显示	11
1.9. 计数器	13
1.10. 接口	13
1.11. 模拟	
2. 开发板	17
2.1. D21x	17
2.1.1. 购买链接	17
2.1.2. D211BB-V1	17
2.1.3. D211BB-V2	19
2.1.4. D211DC-V1	21
2.1.5. D213EC-V4	23
3. 下载代码仓库	26
4. 编译 SDK	27
4.1. Linux	27
4.1.1. 安装 Linux 系统	27
4.1.2. 安装 Luban 的依赖	27
4.1.3. 编译 Luban	28
4.2. RTOS	28
4.2.1. Windows	28
4.2.2. Linux	31
4.3. Baremetal	31
4.3.1. Linux 系统	
4.3.2. Windows 系统	32
4.3.3. 编译 Baremetal	33
5. 烧写 SDK	34
6. 刷机工具	35
7. 调试 SDK	
8. 文档资源	44
8.1. 文档中心	44
8.2. Gitee 下载	44
8.3. SDK 内嵌文档	44
9. 教学视频	45

1. SoC

D21x 是一款高性能的全高清显示和智能控制 SoC,采用国产自主 64 位高算力 RISC-V 内核,内置 16 位 DDR 控制器。D21x 提供丰富的互联外设接口,配备了 2D 图像加速引擎和 H.264 解码引擎,可以满足各类交互设计场景和多媒体互动体验,具有高可靠性、高安全性、高开放度的设计标准,可以面向于泛工业领域应用。

1.1. 处理器

模块	项目	参数和信息
CPU	指令集	RISC-V
	CPU	平头哥 C906
	典型频率	600 MHz@1.2 V
	位宽	64 位
	Icache	32 KB

模块	项目	参数和信息
	Deache	32 KB
	浮点单元	单精度,双精度
DDR	地址空间	2 GB
	DDR2	64 MB@504 MHz
	DDR3	128 MB@672 MHz
	展频	支持
片内存储	BROM	32 KB
	SRAM	96 KB
DMA	通道数	Л
	配置方式	链表式
	状态呈现方式	寄存器
	位宽支持	8/ 16/ 32/ 64 位
	突发长度支持	1/ 4/ 8/ 16
	地址对齐	8 bytes 对齐

1.2. 安全

• CE: Crypto Enginee

• SPI-ENC: SPI Encrypto

• SID: Secure ID

模块	项目	参数和信息
CE	算法	AES, TDES, RSA, MD5, SHA1, TRNG
	专用安全 SRAM	支持
	生成安全秘钥	支持

模块	项目	参数和信息
	多种秘钥输入	支持
	内部专用 DMA	支持
	多路并行处理	支持
SPI-ENC	算法	A3S-128-CTR
	不同 SPI 控制器	配置连接
	密钥配置方式	eFuse
	明文和密文混合传输	支持
	总线传输带宽开销	不影响
	SPI 全双工模式	不支持
SID	ID标识	每颗芯片独立 ID
	量产校准参数	支持
	加密 KEY 存储	支持
	空间大小	4Kbit 容量, 2Kbit 内容, 双备份存储

1.3. 启动

模块	项目	参数和信息
启动顺序	SD Card (SDMC1)	1
	SPI NAND	2
	SPI NOR	3
	eMMC (SDMCO)	4
	客制化	支持
安全启动	固件签名校验	RSA-2048

模块	项目	参数和信息
	加密固件	AES-128
	固件防回滚	支持
刷机模式	USB 刷机	支持
	SD 卡刷机	支持

1.4. 时钟

模块	项目	参数和信息
CMU	PLL 数	5
	PLL_INTO	CPU 单独使用
	PLL_INT1	总线,内部模块,及低速接口模块
	PLL_FRA0	存储接口模块,支持展频
	PLL_FRA1	音频接口模块,支持小数分频
	PLL_FRA2	屏输出模块使用, 支持展频

1.5. 电源

模块	项目	参数和信息
SYSCFG	内置 LDO 数	3
	LDO30	3.0 V x 100 mA,系统复位启动和 AUDIO ADC 供电
	LDO25	2.5 V x 50 mA,DDR 模拟电路和 eFuse 供电
	LDO1x	1.8/ 1.5 V x 500 mA,DDR IO 供电
THS	数目	两路温度传感器
	行为	高低温报警

1.6. 存储

模块	项目	参数和信息
SDMC	SDMC0	SD 卡和 eMMC
	SDMC1	SD ≒
	SDMC2	SDIO
	最大频率	50 MHz
	总线模式	1/4/8线
	eMMC 版本	C5.0
	SD 版本	3.01
	SDIO	3.0
	eMMC HS-SDR 速度	100 MB/s
	eMMC HS-DDR	100 MB/s
	工作电压	3.3 V
	DMA	内部 DMA
	FIFO 深度	128 bytes
	FIFO 位宽	32 bits
QSPI	总线模式	四种: mode0, mode1, mode2, mode3
	线宽	3线或4线
	FIFO 深度	64 bytes
	接口	标准接口,双路输出/双路接口,双路 I/O 接口,四路输出/四路输入接口
	SPI NAND	支持
	SPI Nor	支持
NAND	不支持	

1.7. 多媒体

• DE: Display Engine

• GE: Graphics Engine

• VE: Video Engine

• DVP: Digital Video Port

BVI. Digital video i off		A M A D. J.
模块 	项目	参数和信息
DE	UI层	支持四个矩形窗口
	UI 图层格式	ARGB8888 XRGB8888 RGB888
	_	ARGB4444 ARGB1555 RGB565
	Video 层	ARGB8888 XRGB8888 RGB888 ARGB4444 ARGB1555 RGB565 YUV420P
		NV12 NV21 YUV420_TILE_64x32 YUV420_TILE_128x16 YUV422P
		NV16 NV61 YUYV YVYU UYVY VYUY YUV400 YUV422_TILE_64x32
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	YUV 缩放 1/31.999x ~ 32x
	图像大小	2048x2048
	性能	1920x1080@60fps
	滤波算法	Bilinear 和 6x4 taps 16 phases
	误差扩散 Dither	支持
GE	图像大小	4096x4096
	格式转换	RGB 转 YUV,YUV 转 RGB
	Flip	水平 Flip, 垂直 Flip
	Rotate	90/180/270 RGB 任意角度
	缩放	1/16x ~ 16x
	色彩处理	Alpha 混合,Color Key
	G2D 接口	Fill Rectange, BitBlit, StretchBlit

模块	项目	参数和信息
	误差扩散 Dither	支持
VE	H264	ВР/МР/НР
		1920x1080@30fps 80Mbps
	MJPEG	8192x8192 YUV444 支持编码
	PNG	8192x8192
DVP	录像	1920x1080@30fps
	拍照	五百万
	格式	YUV422 BT.656
	特性	支持直通模式
		支持针对图像的帧
Audio	AMIC	一路
	DMIC	两路
	特性	无 DAC 设计,采用 PWM 输出
		128 x 32 bits FIFO
		中断和 DMA 传输
I2S	采样精度	8bit ~ 32bit
	采样率	8 KHz 至 384 KHz
	特性	支持主机和从机模式

1.8. 显示

模块	项目	参数和信息
LCD	PRGB	24/18/16bit 模式

模块	项目	参数和信息			
		1920x1080@60fps			
		200 MHz pixelclk			
	SRGB	8/ 6bit			
		480x320@60fps			
	I8080	24/ 18/ 16/ 9/ 8 bit 模式			
		960x540@60fps			
	SPI	3/4/2-sda 模式			
		480x320@60fps			
	特性	支持8位色深			
		RGB 三组 IO 可任意交换			
		RGB 组内 IO 支持高低顺序切换			
	,	空白区域数据可配置			
LVDS	接口	Single Link 和 Dual Link			
	分辨率	1920x1080@60fps			
	速率	240Mbps – 700Mbps			
	模式	VESA 和 JEIDA			
	带宽	18bit 和 24bit			
	特性	LVDS_0 和 LVDS_1 互换			
		LVDS_D0-LVDS_D3,LVDS_CK 信号互换			
		LVDS 信号极性选择			
MIPI-DSI	版本	DSI V1.2, D-PHY V1.1			
	数据通道	1/2/3/4 对			

模块	项目	参数和信息	
速率		1Gbps	
	分辨率	1920x1080@60fps	
	模式	Video, Command, Brust	
格式		RGB888, RGB666, RGB565	

1.9. 计数器

• GTC: General Timer Counter

• WDOG: Watch Dog

• RTC: Real Time

模块	项目	参数和信息	
GTC	周期	52bits, 35年	
WDOG	特性说明	固定 32K 时钟源输入	
	<i>y</i>	内部 32 位计时器, 计时单位为一个 32K 时钟周期	
		系统复位和中断信号两个信号输出	
RTC	闹钟	一路,可软件扩展多路	
	关机电流	3 uA,五年待机(150 mAH/ 3 uA/ 24/ 365)	
晶振		外挂晶振,精度无忧	
PWM	数目	8 x PWM	

1.10. 接口

模块	项目	参数和信息	
GMAC	总数	2 x GMAC	
	工作模式	全双工半双工	

模块	项目	参数和信息		
	速率	1000/ 100 /10 Mbps		
	接口	RGMII/RMII		
	DMA	内部 DMA		
	特性	VLAN 哈希过滤		
		接收校验和错误检测		
UART	数目	8 x UART		
	兼容性	工业标准 16550		
	FIFO	256 x 8bit		
	最大速率	3 Mbps		
	RS485	9bit 模式,硬件使能		
TWI	数目	4 x TWI		
	速率	400Kb/s		
	寻址	7bit/10bit		
	模式	主机和从机模式		
CIR	接收 FIFO	64 x 8bits		
	发送 FIFO	128 bytes		
	特性	全物理层接收		
PBUS	数目	2 x PBUS		
	特性	访问配置寄存器和外部设备地址空间		
		16bit 地址和数据总线复用		
		信号时序可灵活配置		
GPIO	引脚	六组引脚 (PA//PB/PC/PD/PE/PF)		

模块	项目	参数和信息		
	特性	中断脉宽可配置,时间可配置为 10 ns~9.83 ms		
		可配置为关闭,通用功能和最多六个专用功能		
		可使能输出,可配置中断触发模式		
		驱动能力配置,八个档位可选		
		上下拉单独配置		
USB	数目	2 x USB		
	协议标准	USB 2.0		
	FIFO	4K byte		
	DMA	内部 DMA		

1.11. 模拟

模块	项目	参数和信息	
ADCIM	特性	16 通道可配	
		低优先级非实时采样,高优先级实时采样	
		支持采样命令 FIFO,不支持数据 FIFO	
GPAI	特性	支持八个模拟信号输入	
		支持单次采样与周期采样	
		高电平报警阈值与低电平报警阈值各一个	
RTP	特性	仅支持四线 RTP, X+/X-/Y+/Y-	
		最多两点触摸	
		压力感应	
		采样滤波,滤波参数可配	

模块	项目	参数和信息	
		支持触摸检测中断	
		14*16 FIFO	
PSADC	特性	支持 16 个模拟信号输入	
		支持 PWM CVRA/CVRB 硬件触发采样	
		支持外部信号触发和软件触发采样	
		单次采样与周期采样两种采样模式	
		支持双队列模式,和单队列模式	
		FIFO1 为 20*16bits,FIFO2 为 12*16bits	

2. 开发板

2.1. D21x

D21x 针对不同的封装共开发了四套开发板供客户进行参考

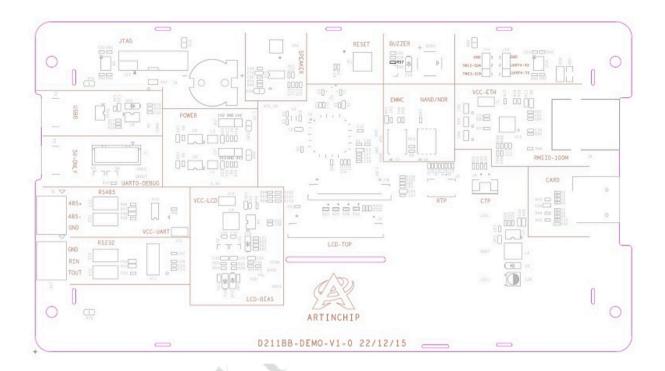
开发板	存储	封装	DDR	屏幕	工程目录	其它功能
D211BB-V1	ENand	QFN88	64M DDR2	LVDS	demo	RTP, MAC, SDCARD
D211BB-V2	SPI NAND	QFN88	64M DDR2	RGB565	demo88_nand	CTP, MAC, CAN, SDCARD
D211DC-V1	SPI NAND	QFN100	128M DDR3	LVDS	demo100_nand	CTP, MAC, CAN, SDCARD, USB
D213EC-V4	SPI NAND	QFN128	128M DDR3	LVDS	demo128_nand	CTP, MAC, SDCARD, WIFI, USB

2.1.1. 购买链接

开发板购买链接

2.1.2. D211BB-V1

2.1.2.1. 开发板标识


D211BB-DEMO-V1-0 22/12/15

2.1.2.2. 规格

- •7 寸屏 1024*600, RGB565/LVDS + RTP/CTP
- SD Card
- EMMC x4/ QSPI NAND Flash
- RTC + USB0
- 100M Ethernet0
- RS485 + RS232 + UART + I2C
- DSPK + Buzzer
- DMIC

2.1.2.3. 器件布局

2.1.2.4. 实物图

2.1.2.5. 方案配置

表 2-1 方案配置文件选择

方案配置	文件
方案配置的工程文件	target/d211/demo/
编译选项	d211_demo_defconfig
固件	d211_demo_v1.0.0.img

2.1.2.6. 原理图

点此下载开发板的原理图

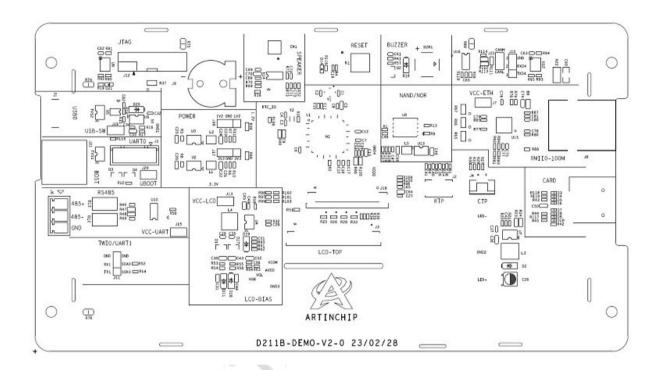
2.1.2.7. 供电跳线

为了方便功耗测试,对下列几大模块的供电进行了跳线隔离:

- VCC-ETH: 百兆网络的 VCC
- VCC-LCD: 屏幕的 VCC
- VCC-UART: RS232 和 RS485 的 VCC

2.1.3. D211BB-V2

2.1.3.1. 开发板标识


D211BB-DEMO-V1-0 22/12/15

2.1.3.2. 规格

- 7 寸屏 1024*600, RGB565/LVDS + RTP/CTP
- SD Card
- EMMC x4/ QSPI NAND Flash
- RTC + USB0
- 100M Ethernet0
- RS485 + CAN + UART + I2C
- DSPK + Buzzer
- DMIC

2.1.3.3. 器件布局

2.1.3.4. 实物图

2.1.3.5. 方案配置

表 2-2 方案配置文件选择

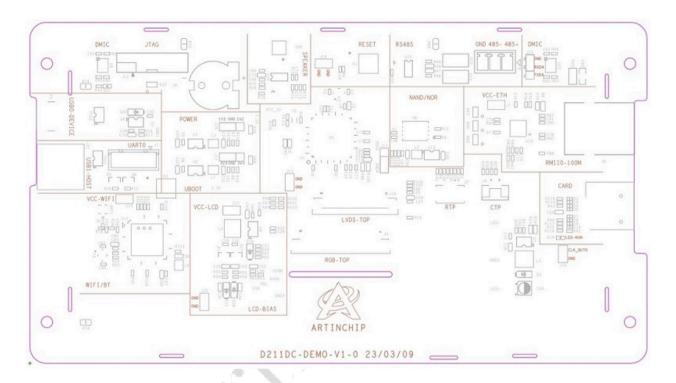
方案配置	文件
方案配置的工程文件	target/d211/demo88_nand/
编译选项	d211_demo88_nand_defconfig
固件	d211_demo88_nand_page_2k_block_128k_v1.0.0.img

2.1.3.6. 原理图

点此下载开发板原理图。

2.1.4. D211DC-V1

2.1.4.1. 开发板标识


D211DC-DEMO-V1-0 23/03/09

2.1.4.2. 规格

- 寸屏 1024*600, LVDS/ CTP
- SD Card
- QSPI NAND Flash
- RTC + USB0 + USB1
- 100M Ethernet0
- WIFI
- DSPK + DMIC
- RS485

2.1.4.3. 器件布局

2.1.4.4. 实物图

2.1.4.5. 方案配置

表 2-3 方案配置文件

A4 = - 54 MANGETTS 411		
方案配置	文件	
方案配置的工程文件	target/d211/demo88_nand/	

表 2-3 方案配置文件(续)

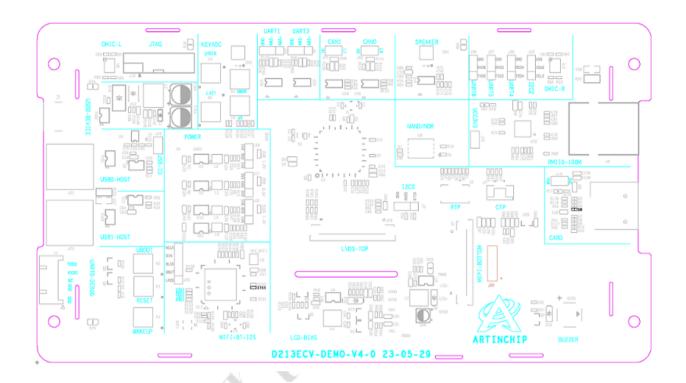
方案配置	文件
编译选项	target/d211/demo100_nand/
固件	d211_demo100_nand_page_2k_block_128k_v1.0.0.img

2.1.4.6. 原理图

点此下载开发板原理图。

2.1.5. D213EC-V4

2.1.5.1. 开发板标识


D213ECV-DEMO-V4-0 23-05-29

2.1.5.2. 规格

- 寸屏 1024*600, LVDS/ CTP
- 10.1 寸屏 800*1280, MIPI/CTP
- SD Card
- QSPI NAND Flash
- RTC + USB0 + USB1
- 100M Ethernet0
- WIFI
- DSPK + DMIC
- RS485x2 + RS232x2
- CAN0 + CAN1

2.1.5.3. 器件布局

2.1.5.4. 实物图

2.1.5.5. 方案配置

表 2-4 方案配置文件

方案配置	文件
方案配置的工程文件	target/d211/demo128_nand/
编译选项	d211_demo128_nand_defconfig
固件	d211_demo128_nand_page_2k_block_128k_v1.0.0.img

2.1.5.6. 原理图

点此下载开发板原理图。

3. 下载代码仓库

ArtInChip 通过码云 (gitee) 提供相关仓库的下载资源且全部开源:

• Luban (Linux) 代码仓库:

git clone https://gitee.com/artinchip/d211x.git

• Luban-Lite (RTOS) 代码仓库:

git clone https://gitee.com/artinchip/luban-lite.git

• Baremetal (裸机)代码仓库:

git clone https://gitee.com/artinchip/baremetal.git

• 文档仓库:

git clone https://gitee.com/artinchip/docs.git

•工具仓库:

git clone https://gitee.com/artinchip/tools.git

广东匠芯创科技有限公司

广东匠芯创科技有限公司以SoC芯片设计、工业人机交互、工业智能算法为核心,致力于成为世界一流的工业应用芯片解决方案供应商

仓库 (6)

O Docs

本仓库由广东匠芯创科技有限公司维护, 专门用于发布 匠芯创的官方文档。这些文档旨在为开源社区提供 资源,允许任何个人或组织自由地使用、复制、修改...

@1 ☆0 ¥0

Luban-lite

Luban-Lite SDK 是由ArtInChip设计的,旨在为系统级芯 片(SoC)设计提供—个轻量级、高效且易于使用的软件开 发工具包。该SDK的设计规划兼顾了简单性与广泛的客...

◎ 34 ☆ 97 ¥ 25

本仓库是针对ArtInChip平台优化的编译框架, 基于 Buildroot的优秀架构并进行了必要的重构和改进。它具 有简化的芯片架构和平台、精简的软件包、优化的系...

© 14 ☆ 48 ¥ 29

本仓库是广东匠芯创科技有限公司官方发布的相关工具 集。这些工具主要面向系统级芯片 (SoC) 和微控制器 单元 (MCU) 的开发与应用,提供了一系列的辅助功...

© 11 ☆ 18 ¥ 0

Baremetal

本仓库由广东匠芯创科技有限公司维护,专门用于发布 裸机软件开发工具包的官方文档。该SDK作为一个开源 项目,允许任何个人或组织自由地使用、复制、修改...

©8 ☆11 ¥0

thirdparty-app

本仓库用于存储第三方源码 (DL) 库。DL库指的是不由 SoC制造商直接开发的、来自外部供应商或开源社区的 软件库。

@5 ☆1 ¥0

图 3-1 ArtInChip 的仓库示例

ArtInChip 仓库会跟随 ArtInChip 的产品发布而不时更新。

4. 编译 SDK

ArtInChip 提供下列 SDK 供用户选择:

- Luban 是 ArtInChip 基于 Buildroot 深度优化的嵌入式 Linux 系统。
- Luban-Lite 是 ArtInChip 基于 RT-Thread 深度开发的嵌入式实时系统,具有下列特性:
 - 。支持 baremetal 构建模式
 - 。支持 freerots
 - 。支持 rt-thread 核和 rt-thread 生态
- Baremetal 是 ArtInChip 的嵌入式裸机系统。

本章节主要介绍如何使用不同的操作环境快速搭建 SDK 编译环境并编译固件。用户可根据选择的 SDK 和操作环境,执行对应的编译流程。

关于 VScode 等 IDE 工具的使用,可参考详细文档。

4.1. Linux

Luban 是基于 Buildroot 深度定制的多场景操作系统,具备稳定、安全、开放、敏捷的特点。在标准、高效的构建基础上,通过开放多样化的用户接口和丰富的第三方中间件应用,满足多种应用场景的开发。

4.1.1. 安装 Linux 系统

Luban SDK 的开发需要在 Linux 系统中进行,所以首先需要有一台运行着 Linux 系统的计算机。

ArtInChip 推荐的 Linux 发行版为 Ubuntu 20.04 LTS(Long Term Support)版本,其它版本也可行,只是安装软件包的依赖和版本不同。

Ubuntu 的安装教程在网上有很多可参考,以及相关常见问题也可以通过搜索查找解决方案。

- Ubuntu 官方网站: http://www.ubuntu.com
- 中文地址为: http://www.ubuntu.org.cn/index_kylin
- 桌面版下载地址: http://www.ubuntu.com/download/desktop

4.1.2. 安装 Luban 的依赖

Luban SDK 的开发环境中,还需要安装一些依赖包,且对几个关键工具有版本要求:

- GCC 版本 >= 6.4
- GLIBCXX 版本 >= 3.4.22 (在 libstd++.so.6 库文件中查看该版本号)
- Python3 版本 >= 3.5

Luban SDK 提供了一键安装脚本 oneclick.sh, 方便用户最快 1 分钟搭建好开发环境。

有可用软件源的网络环境中,Ubuntu 系统是用 apt-get 工具完成软件安装,"一键安装" 脚本也需要用到此 apt-get 工具。

在命令行中执行一键安装脚本的方法:

```
cd Luban_SDK_Root_Directory/
sudo ./tools/scripts/oneclick.sh quiet
```

oneclick.sh 会自动检查当前系统的版本、环境,在软件源可以正常访问的情况下,逐个安装 Luban 需要的软件工具,安装成功后会有提示信息:

```
fdt 0.3.2

[OK]

>>> Congratulations! All the package is ready.
>>> Enjoy the LubanOS!
```

oneclick.sh 目前已支持的系统有:

- Ubuntu 14.04 \, 16.04 \, 18.04 \, 20.04 \, 22.04
- CentOS 7.x, 8.x

4.1.3. 编译 Luban

```
source tools/onestep.sh
lunch d211_demo_defconfig
make
.....

Image file is generated: /xxx/d211/luban/output/d211_demo/images/d211_demo_v1.0.0.img
```

编译后的镜像名称为 d211_demo_v1.0.0.img

4.2. RTOS

4.2.1. Windows

本节介绍了 Windows 环境下的编译方式,以及两个命令行工具的使用。

SDK 采用了 Scons 作为编译框架的基础语言,Windows 环境中使用的工具存放在 luban-lite/tools/env/tools 目录中,不需要单独安装。

4.2.1.1. 常规编译

Windows 环境下的常规编译流程如下所示:

1. 工程加载

双击 SDK 根目录下的 win_cmd.bat 或 win_env.bat, 加载工程的现有配置:

- scons --list-def
- scons --apply-def=<项目索引或名称>

注:

win_cmd.bat 和 win_env.bat 为两种不同的批处理文件,详情可查看批处理文件。

2. 配置

在加载完工程配置后,使用 scons --menuconfig 命令来修改当前配置。

3. 编译

使用 命令进行编译。

编译成功的结果输出示例如下:

Imagefile is generated:

 $luban-lite/output/d21x_demo100-nand_rt-thread_helloworld/images/d21x_demo100_nand_page_2k_block_12\\8k_v1.0.0.img$

编译后固件名称为 d21x_demo100_nand_page_2k_block_128k_v1.0.0.img

- 使用 scons --verbose 命令打印详细的编译信息。
- 使用 scons --clean 命令清理当前工程。
- 使用 Is 编译生成的目标文件:

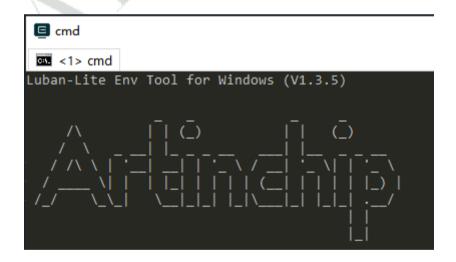
1s

 $\label{lowerld} \verb|d21x_demo100-nand_rt-thread_helloworld/images/d21x_demo100_nand_page_2k_block_128k_v1.0.0.i \\ \verb|mg/d21x.elf| \\$

4.2.1.2. OneStep

OneStep 是 ArtInChip 对 SCons 工具二次封装的总称,在基础命令上开发了一组更高效和方便的快捷命令,以实现任意目录、一步即达的目的。在 CMD 或者 ENV 窗口启动后,OneStep 命令已经生效,可以从任意目录执行命令。关于 OneStep 命令的详细描述,可查看。


```
E:\workspace\luban-lite>h
Luban-Lite SDK OneStep commands:
                        : Get this help.
: Start with selected defconfig, .e.g. lunch 3
: Config SDK with menuconfig
   1unch [No.]
  me
                           Build all and generate final image
                         : Clean all
                        cd to SDK root directory.cd to build output directory.
   croot/cr
   cout/co
   cbuild/cb
                        : cd to build root directory.
   ctarget/ct
                          cd to target board directory.
                        : List all SDK defconfig.
: List all SDK defconfig.
: Get current project's information.
: Build all the *defconfig in target/configs
: Clean and build all the *defconfig in target/configs
   list
   buildall
   rebuildall
                           Burn image file to target board
```


4.2.1.3. 批处理文件

SDK 根目录包含两个批处理文件,实现命令行的使用,推荐使用 win_env.bat,如下所示:

· ENV 运行环境

直接双击 luban-lite/win_env.bat 打开 Windows 专有的 env 命令行工具,后面所有命令都在该命令行工具中进行操作。

ENV 是 RT-Thread 的原生工具,是 SDK 包中集成了编译所需要使用的所有的工具的一种使用方式。

·CMD 运行环境

直接双击 luban-lite/win_cmd.bat 打开 Windows 的 CMD 命令行工具,后面所有命令的使用和 ENV 相同。

CMD 是 Windows 的使用环境,除了 SDK 的命令外,还可以使用系统自己安装的工具的命令,因此功能更强大。

4.2.2. Linux

在 Linux 系统上搭建 Luban-Lite 的开发环境需要安装一些依赖包:

1. 进入 SDK 根目录:

cd d211-lite/

2. 安装自动化构建工具 scons

sudo apt install scons

3. 安装 Python2, 用于编译

sudo apt install pip

4. 安装 Python3 + pycryptodomex, 用于打包和签名

cd tools/env/local_pkgs/

tar xvf pycryptodomex-3.11.0.tar.gz

cd pycryptodomex-3.11.0

sudo python3 setup.py install

4.3. Baremetal

Baremetal 是 ArtInChip 的嵌入式裸机系统,本章节主要介绍如何在 Linux 和 Windows 上快速搭建环境和编译固件

4.3.1. Linux 系统

在 Linux 系统上搭建 Baremetal 的开发环境需要安装一些依赖包:

1. 进入 SDK 根目录:

cd berametal/

2. 安装自动化构建工具 scons

sudo apt install scons

3. 安装 Python2, 用于编译

sudo apt install pip

4. 安装 Python3 + pycryptodomex, 用于打包和签名

cd tools/env/local_pkgs/

tar xvf pycryptodomex-3.11.0.tar.gz


cd pycryptodomex-3.11.0

sudo python3 setup.py install

4.3.2. Windows 系统

Windows 下对应的各种工具已经存放在 baremetal/tools/env 目录当中,不需要安装,直接双击 berametal/win_env.bat 或者 berametal/win_cmd.bat 即可

4.3.3. 编译 Baremetal

编译后的固件名称为 d21x_demo100_nand_page_2k_block_128k_v1.0.0.img。

5. 烧写 SDK

Luban-Lite 的 OneStep 命令 和 VSCode 的快捷命令中都集成了烧写功能。启动方法如下:

- 1. OneStep 命令方式
 - 在 VSCode 终端中执行命令aicupg
- 2. VSCode 快捷命令方式
 - VSCode 从界面中执行快捷命令,即 Ctrl+Shift+B:
 - 在弹出的命令列表中,选择 Luban-Lite aicupg:

Luban-Lite 中还提供了其它快捷命令,包括:

- 1. list: 列出当前所有方案配置
- 2. menuconfig: 打开 menuconfig 配置界面
- 3. i: 查看当前的方案配置

6. 刷机工具

ArtInChip 提供两组刷机工具:

• AiBurn: 单机调试刷机工具

• AiBurnPro: 一拖八量产刷机工具

按照下载代码仓库中的说明, 可下载刷机工具。

刷机流程如下所示:

1. 如果使用 AiBum, 先选择编译好的镜像, 在开发板进入烧写模式后点击**开始**按钮即可自动进行烧写。

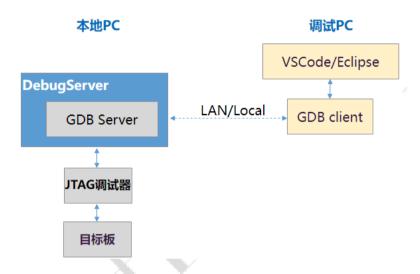
用户也可以根据实际情况,选择以下任意方式进入烧写模式:

- •终端设备为空片,则上电直接进入 USB 烧写模式。
- •终端设备非空片,如果能进入 U-Boot ,则 在 U-Boot 中可以使用 aicupg usb 0 命令进入烧写模式。
- 终端设备非空片,如果能进入终端,则执行命令 aicupg,系统直接重启进入烧写模式。
- 2. 串口调试。烧写镜像完成后可以通过串口进行信息的查看,默认的调试串口配置信息为:

• BaudRate: 115200

• Data bits: 8

• Stop bits: 1



- Parity: None
- Flow control: None

7. 调试 SDK

JTAG 调试的整个物理环境示意图如下,本地 PC 和调试 PC 可以是同一台 PC,也可以是局域网内不同的两台 PC:

执行调试流程之前,需要先准备 JTAG 调试的物理环境,包括:

- 硬件:
 - 。板子上有 JTAG 插座,或者飞线引出了 JTAG 信号线,可以连接到 JTAG 调试器。
 - 。JTAG 调试器: Luban-Lite 支持 CKLink 调试器 和 AIC JTAG 两种。

- 。保证板子和 JTAG 调试器的信号线正确连接,请参考调试器上的信号标识。
- 软件:

- 。安装 T-HeadDebugServer:调试器在 PC 端的代理,提供 GDB Server 调试服务。
- 。安装 AiBurn: ArtInChip 烧录软件,需要用到其中的 USB 烧写驱动。

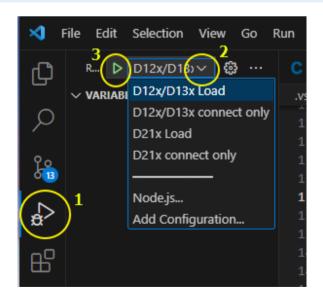
注:

调试前,确保 PC 已安装上述软件。由于安装过程涉及驱动安装,务必开启管理员权限。关于软件的安装包,可以在工具包中找到。所有资源均可在代码仓库中下载。

- 选择当前需要 JTAG 调试的场景。JTAG 调试包括以下两种场景:
 - 。板子刚执行完 PSRAM/ DDR 的初始化,等待 JTAG 连接,Debug 配置选择执行:Dxx load
 - 。板子上已经在运行一份镜像,中途用 JTAG 连接, Debug 配置选择执行: Dxx connect only

Luban-Lite 的 VSCode 配置中已经默认提供了四种 JTAG 选择,选择的方法:

SoC 型号	板子上无镜像	板子上已经在运行镜像
D21x	D21x load	D21x connect only
D12X/D12x	D12X/D12x load	D12X/D12x connect only

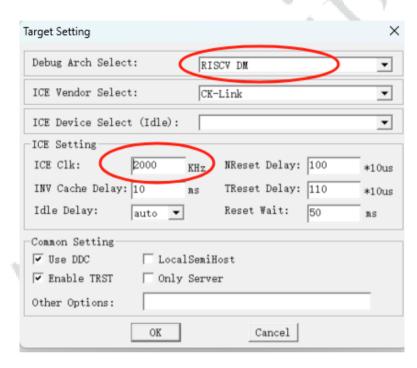

完成上述 JTAG 环境配置后,遵照以下流程调试 SDK:

1. 根据 JTAG 调试的场景,在 VSCode 中选择合适的 Debug 配置方法,点击箭头小图标(快捷键 **F5**),界面操作如下:

注:

Debug 配置只需选择一次, VSCode 会记住上次的配置。

2. 运行 T-HeadDebugServer 并配置下列参数:

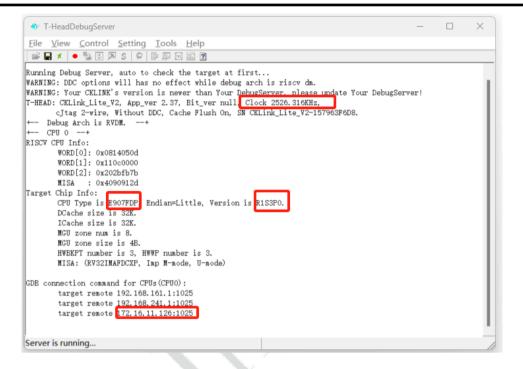

注:

T-HeadDebugServer 完成安装后,桌面会自动创建一个 T-HeadDebugServer 的图标。

在 Setting 目录下选择 Target Setting

• Debug Arch Select: 必须选择 RISCV DM

• ICE Clk: 设置 2000



3. 等待调试器正常连接且目标板上电后,点击红色小三角按钮,或者点击 Control > RunDebugServer,开始连接设备:

正常情况下,执行完上述步骤会看到打印出 CPU 信息如下:

注:

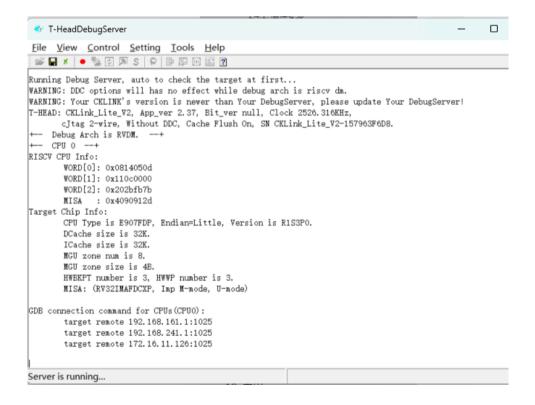
- 通过 JTAG load elf 前,必须要先完成 PSRAM、或者 DDR 初始化,否则 JTAG 在写 PSRAM/ DDR 时会出现异常,使用 JTAG 口需要关闭 IIC、以及 Touch panel,操作命令如下:
 - a. 运行 scons -- menuconfig 命令。
 - b. 执行下列命令关闭 I2C 和 Touch Panel。

```
Board options --->
[] Using i2c3
Drivers options --->
Peripheral --->
Touch Panel Support --->
Gt911 touch panel options --->
[] Using touch panel gt911
```

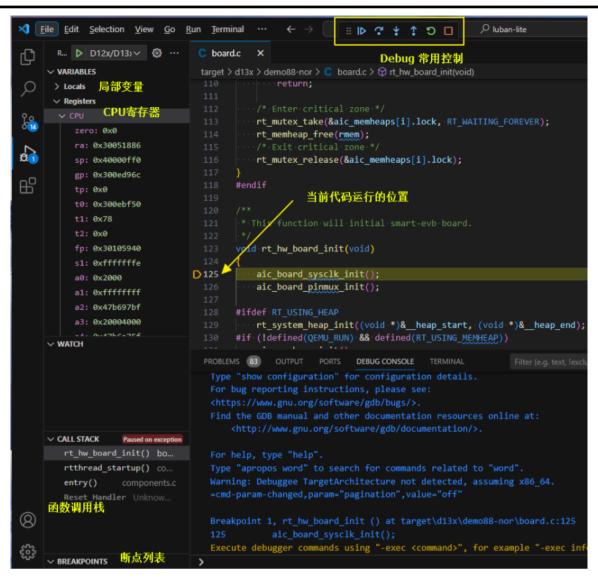

c. 若使用 JTAG 口,另外需断开 CTP 触屏排线。

- 4. 在 VSCode 中修改 Luban-Lite/.vscode/launch.json 文件的下列参数,与当前方案配置保持一致:
 - · 路径名、elf 文件名
 - DebugServer 的服务 IP 和端口号,选择 Setting > Socket Setting
 - 断点

如果要添加多个断点,方法如下:


以 Dxx load 为例,修改方法如下:

Dxx connect only 需要修改的参数和上面类似,在 launch. json 文件中都用关键字 FIXME 标注。


5. 打开 DebugServer, 确保已经成功连接 JTAG 调试器。

如果成功连接,则界面显示如下:

如果连接成功, VSCode 会进入 Debug 界面, 如下所示:

6. 按照实际需求,开始调试。

8. 文档资源

8.1. 文档中心

ArtInChip 文档中心可供用户在线查阅所有文档资源,官方网址: http://aicdoc.artinchip.com。

8.2. Gitee 下载

产品相关文档使用 Gitee 存储和管理, 也是开源仓库, 可以通过下面的链接进行下载:

git clone https://gitee.com/artinchip/docs.git

8.3. SDK 内嵌文档

SDK 仓库中内嵌了相关的使用说明文档,存放在 SDK 根目录中的 doc 文件夹中。

9. 教学视频

 $https://space.bilibili.com/3546578952390720?spm_id_from = 333.1007.0.0$

